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Abstract

Bioinformatics is a field which concerns with application of information technology and computer 
science to the field of molecular biology. A very popular discipline in bioinformatics is Next-
generation sequencing or DNA sequencing. It specifies sequencing methods for determining the 
order of nucleotide bases-adenine, guanine, cytosine, and thymine in a molecule of DNA which is 
then assembled for analysis. A central challenge in DNA sequencing is sequence alignment, 
whereby fragments of much longer DNA sequence are aligned and merged in order to construct the 
original sequence. A wide variety of alignment algorithms have been subsequently developed over 
the past few years. Some commonly used softwares implementing these algorithms are BWA-SW, 
Bowtie, Velvet, SOAP and MAQ. Most of these take lot of time to execute on general purpose 
processors. Hardware accelerators such as FPGAs and GPUs can be used with processors to fasten 
these applications. As per our knowledge there are very few reports published in literature about 
accelerating these applications using FPGAs. In this report, we first exploit the performance and 
memory issues in processor based implementation of various algorithms and choose one out of 
them for implementation. Secondly, we present the design of the FPGA based implementation of the 
chosen software tool via Hardware-Software codesign to achieve a considerable increase in 
performance as compared to its processor implementation.

Introduction

In bioinformatics, sequence alignment is a way of arranging the sequences of DNA, RNA, or 
protein to identify regions of similarity that may be a conse-quence of functional, structural, or 
evolutionary relationships between the sequences. In other words, it is a scheme of writing one 
sequence on top of another where the residues in one position are deemed to have a common 
evolutionary origin. 

NGS or DNA Sequencing is a part of sequence alignment whereby, nu cleotide bases adenine, 
guanine, cytosine and thymine are aligned against a reference genome for assembly at a later stage. 
The fragments of DNA are matched against a given genome using some algorithm so that it can be 
assembled at a later stage for DNA analysis. 

Next Generation Sequencing Problems and Complexity
Knowledge of DNA sequences has become indispensable for basic biological research. It is also 
used in other research branches which utilize DNA sequencing. Numerous applied fields such as 
diagnostic, biotechnology, forensic biology and biological systematics have come up which use 
DNA sequencing for their applications. The advent of this technology has significantly accelerated 
biological research and discovery[17][18]. 

Genomes vary widely in size. The smallest known genome for a free-living organism(a bacterium) 
contains about 600,000 DNA base pairs, while human and mouse genomes have some 3 billion. 
Next generation sequencing technology cannot read whole genomes in one go, but rather small 
pieces between 20 and 1000 bases, depending on the technology used. So there is a need to align 
those read sequences in order to assemble and construct the whole DNA to be useful 
for analysis. 

Fortunately, projects by scientific collaboration across continents, have generated the complete 
DNA sequences of many animal, plant, and microbial genomes. The speed of sequencing attained 
with modern DNA sequencing technology has been instrumental in the sequencing of the human 
genome, in the Human Genome Project. 



Sequence Alignment Algorithms 
The first successful gapped sequence alignment algorithm was due to Smith- Waterman[19]. They 
formulated the alignment problem as a finite optimization problem which was solved by dynamic 
programming. Although database sizes have increased such that Smith-Waterman is no longer 
practical to use, it is helpful as a base line by which to measure both the performance and quality of 
heuristic algorithms. In the past few years many efficient algorithms have come up which align 
sequences in very little time. The latest ones include BWA-SW[20] , Bowtie[21] , Mosaik, 
Velvet[22] , SOAP2[23] and MAQ[24]. 

Burrows- Wheeler Transform (BWT)[25] is an algorithm which focuses on prefix trie which is the 
trie of the reverse string. Suffix trie, or simply a trie, is a data structure that stores all the su#xes of a 
string, enabling fast string matching. All algorithms on a trie can be seamlessly applied to the 
correspond-ing prefix trie. BWT-SW essentially sample sub- strings of the reference by a top-down 
traversal on the trie and align these substrings against the query by dynamic programming. 

Burrows- Wheeler Aligner's Smith-Waterman Alignment (BWA-SW), is used to align long sequences 
up to 1 Mb against a large sequence database (e.g. the human genome) with a few gigabytes of 
memory. BWA-SW furthers BWT-SW by representing the query as a directed word graph (DAWG)
[26], which also enables it to deploy heuristics to accelerate alignment. The algorithm is as accurate 
as SSAHA2[28], more accurate than BLAT[27], and is several to tens of 
times faster than both. 

Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads 
to large genomes. For the human genome, Burrows- Wheeler indexing allows Bowtie to align more 
than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. 
Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking 
algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve 
even greater alignment speeds. 

Velvet manipulates de Bruijn graphs for genomic sequence assembly. A de Bruijn graph is a 
compact representation based on short words (k-mers) that is ideal for high coverage, very short 
read (25-50 bp) data sets. Applying Velvet to very short reads and paired-ends information only, one 
can produce contigs of significant length, up to 50-kb N50 length in simulations of prokaryotic data 
and 3-kb N50 on simulated mammalian BACs. When applied to real Solexa data sets without read 
pairs, Velvet generated contigs of about 8 kb in a prokaryote and 2 kb in a mammalian BAC, in 
close agreement with our simulated results without read-pair significantly improved version of the 
short oligonucleotide alignment program that both reduces computer memory usage and increases 
alignment speed at an unprecedented rate. It uses a Burrows Wheeler Transformation (BWT) 
compression index to substitute the seed strategy for indexing the reference sequence in the main 
memory. When tested on the whole human genome, it is found that there is reduced memory usage 
from 14.7 to 5.4 GB and improved alignment speed by 20#30 times. SOAP2 is compatible with 
both single and paired-end reads. Additionally, this tool now supports multiple text and compressed 
file formats. A consensus builder has also been developed for consensus assembly and SNP 
detection from alignment of short reads on a reference genome. 

MAQ can build assemblies by mapping shotgun short reads to a reference genome, using quality 
scores to derive genotype calls of the consensus sequence of a diploid genome, e.g., from a human 
sample. MAQ makes full use of mate- pair information and estimates the error probability of each 
read alignment. Error probabilities are also derived for the final genotype calls, using a Bayesian 
statistical model that incorporates the mapping qualities, error probabilities from the raw sequence 
quality scores, sampling of the two haplotypes, and an empirical model for correlated errors at a 



site. Both read mapping and genotype calling are evaluated on simulated data and real data. MAQ is 
accurate, efficient, versatile, and user-friendly. 

FPGAs as Hardware Accelerators 
Hardware accelerators employ the use of hardware which can be coupled with general purpose 
processors and super computers to perform some task faster than software. Many type of hardware 
devices are available such as FPGAs and GPUs for many applications. Accelerator technology has 
become very popular in the community in the past decade. Recently many researchers have reported 
accelerator implementations for sequence alignment[4][5]. FPGA is a class of hardware accelerators 
that can be programmed after manufacturing. Instead of being restricted to any predetermined 
hardware function, an FPGA allows to program product features and functions, adapt to new 
standards, and reconfigure hardware for specific applications even after the product has been 
installed in the field hence the name "field-programmable". 

Review of Literature

Sequence alignment manifests itselfs in two forms : short and long reads. The term 'short read' came 
about to describe technologies that produced reads that were substantially shorter (30-50 bp) than 
the mainstream technologies employed at that point (1000bp). Researches have tried to speed up the 
sequence alignment algorithms in both fields. A comparison of the achieved speed-up for 
long read alignment algorithms is shown in the table 1. 

Program 100bp 200bp 500bp 1000bp 10000bp

BLAT 559 486 512 599 710

SSAHA2 9345 5252 6863 3112 -

BWA-SW 84 118 152 150 120
Table 1: A comparison of approximate running times of long-read alignment software tools. Approximately 10000000 bp 
data of different read lengths are simulated from the human genome. 
These simulated reads are aligned back to the human genome with BLAT (option -fastMap), BWA-SW and SSAHA2 
(option =454 for 100 and 200 bp reads). In each cell in this table, the numbers are the CPU seconds on a single-core of 
an Intel E5420 2.5 GHz CPU. Note the speedup of BWA-SW algorithm compared to the old ones[8]. 

Algorithm Author(s) Host Processor FPGA Speedup

S-W Li, I. T., Shum, W.,T[6] 2GHz Intel Pentium 4 Stratix EP1S40 160x 

S-W Zhang, Tang, Gao[7] 2.2GHz AMD Opteron XD1000 200x
Table 2: A comparison of FPGA implementations of Smith-Waterman algorithm for two researches. The speedup is 
measured with FPGA(and processor) based implementation of the algorithm as compared to pure software 
implementation. There is a considerable speedup obtained. 

For FPGAs, it is very difficult to come up with a comparison of the different implementations, as 
there is no fixed benchmark for testing the performance. Different authors present different ways to 
claim that their implementation is best. Here we make an effort to analyze the various 
implementations. Some speedup results for the hardware-software codesign implementations as 
compared to pure software implementation is shown in table 2.

There have have been implementations of very few old algorithms like smith-waterman on 



FPGAs[4][5] and they have reported a considerable speedup. Besides, Burrows wheeler 
transform(BWT) algorithm which is a central approach for some of the algorithms has also been 
implemented on FPGA[1]. Results showed a reduction in more than 40% the number of cycles 
required to perform the complete task compared with previous solutions and an increase in 
maximum frequency. 
Some hash based algorithms have also shown an increase in performance when implemented on 
FPGA[2][3]. Since the above mentioned algorithms are based on BWT and hash algorithms, they 
were also likely to show a speedup when implemented on FPGAs.

Methodology

Here is a breif description of various stages in the project: 
•  Profiling: The C/C++ code of the above open source software tools under GPL licence 

have been downloaded from the web. Profiling of these is done by running them on real 
data. The compute intensive kernels for each tool have been identified. 

• High Level Performance Estimation: We have done the performance estimate of running 
the kernels in the FPGA. An analysis has been done on these to identify the application best 
suited for FPGAs. This analysis is based on the time critical kernel. We have consider the 
rough estimate of the resources consumed by the kernel on the FPGA. From this, we are 
able to estimate the number of functional units to exploit parallelism. Speedup also depends 
on the communication interface and memory hierarchy. It has also been modelled at a higher 
level to estimate the speedup. 

• Selection of desired algorithm: Based on the performance estimation of each algorithm we 
have chosen the best application for the final implementation on FPGA. 

• Hardware-Software Codesign: The performance estimate has been used for doing 
hardware software codesign where the code is divided into specfic parts which exclusively 
execute on FPGA and on processor. 

Profiling Results

The various possible classifications of sequence alignment algorithms include classification on the 
basis of completeness viz. gapped(where insertions and deletions are considered) or ungapped 
(opposite of gapped); on the basis of no. of query sequences sets viz. single-end(where only single 
set of query sequences are used to align), paired-end(two sets of query sequences each from two 
different ends are used) or de-novo(where there is no reference gnome) and; on the basis of length 
of reads viz short(query sequences are short usually <100bp) or long read(about 400bp). 

Due to simplicity and completeness, I chose to consider only the gapped, single-end read 
algorithms. 

Apparatus: 
• Tools

1. wgsim[9], a utility in the samtools package, for generating the random reads, both short 
and long reads

2. Intel Vtune Amplifier[10], for profiling and locating time and memory critical areas.



• Subject benchmarks: These include the following reference Human Chromosomes(hg 19) 
downloaded from UCSC Genome Database[11]
1. Chromosome 19
2. Chromosome 10
3. Chromosome X

• System: Sony Vaio (Intel Core i3, Ubuntu10.10, 3GB RAM) was used for the profiling
• Open Source Softwares: Bwa, Bwa-sw[12], Maq[13] and Soap[14] were profiled

Observations: Presented in table 3 are some brief results of alignment of various query sequence 
against reference genome. These results agree with the researches of various authors[15][16].

Chromosome Size of the 
reference 
genome(MB) 

Algorithm No. of bp in 
the query 
sequence

Time taken to 
index(s)

Time taken to 
align(s) 

10 131.8 maq 70 40.4 741.6

soap 70 194.1 79.4

bwa* 70 232.4 315.2

bwa-sw* 500 232.4 8838.5

19 57.5 maq 70 31.5 865.2

soap 70 78.2 84.2

bwa 70 92.7 359.4

bwa-sw 500 92.7 8030.5

X 151 maq 70 41.1 802.7

soap 70 225.8 86.4

bwa 70 267.5 342.6

bwa-sw 400 267.5 11269.8
Table 3: Profiled results of various software tools(in their default configuration) with the given chromosomes in fasta 
sequences as input. The Index column gives the time taken to generate the files from fasta sequences required for 
providing input to the alignment tool. The queries were generated thorough wgsim in the fastaq format.

Algorithm Function % Contrib Remarks

bwa-index bwa_index 100 It calls a lot of functions each consuming a 
significant amount of time.

bwa bwa_cal_sa_reg_gap 99.1 bwa_cal_sa_reg_gap is a sub-function of 

bwa_aln_core 100 bwa_aln_core which constitutes a critical part of it

bwa-sw bsw2_aln_core 99.6 The functions above it constitute a lot of code but 
take very less time.

Table 4: Time Critical Areas in “Burrows- Wheeler Aligner”. The functions shown are part of the c code obtained under 
GPL license. The functions(and there sub-functions) are only a rough estimation of the code which will actually be 
implemented in HDL and onto FPGA. Rest of the code will be implemented on the processor and interfacing would be 
done.

*bwa is for short read whereas bwa-sw is for long read sequence alignment. Rest are short read



Conclusion: I chose to use bwa for implementation on fpga because:

1. The profiling results as summarised in table 4 show that it is likely to show an increase in 
performance when implemented on FPGA.

2. The algorithm is recent and highly cited with about 300 citations as of Jun 10 2011. It is one 
of the most widely used software tool, “Burrows Wheeler Aligner”.

Design of the algorithm

    Code Analyses

The code is executed in loops with each iteration processing a single sequence in 0.32 ms time as 
shown in figure 1. The reference gnome is kept in the memory and the short sequences are aligned 
with it. For a reference gnome of size 153.3MB which is one of the largest gnome in human body*, 
the data required is 60MB and for 262,144 sequences of 50bp each taken at a time, the data passed 
constitutes 20.95MB. The result of all these sequences constitute 5.95MB which will be returned 
back for output. The local memory requirements within the function is 145MB. Detailed analysis is 
shown in the table 5.

In each iteration, the query sequences are compared sequentially with short parts of the reference 
gnome at a time. The results are recorded in order and when the alignment is complete they are 
returned back to the CPU. 

S.No. Variable Quantity(in no.) Memory Usage

1 Reference Gnome 2** 60MB

2 Query sequences 262144 20.95MB

Total(including some extra local variables) 145MB
Table 5: Detailed analysis of local memory requirements. The depicted results are for 153.3MB 
reference gnome with 262,144 short sequences of 50bp each. Further, the memory required is 
directly proportional to the size of reference gnome and the number of sequences. 

Hardware-Software Codesign

Code Analysis conveyed that memory required for each iteration is almost similar but not exactly 
the same. So, we decided to use small FIFO buffers for storing a part of  the reference gnome to 
source the FPGA iterative blocks. This is because FIFO buffers can be fed with a small amount of 
data^ from DRAM at a time and can be used independently. The same data will be passed to the 
FIFO buffers in fixed intervals of time. The iterative blocks in FPGA will use the data from FIFO 
buffers sequentially and execute the code. Care would be taken to ensure that none of the buffers 
become empty. The query sequences which are smaller in size will be directly passed to the 
registers of the iterative blocks. After processing, the results will be returned to the CPU via the 
same DRAM. The entire process is shown in Figure 2.

* according to human gnome project, chromosome 10 of hg19 database
** Another copy of reference gnome is also stored
^ Reference gnome is quite large. Making multiple copies of it may result in running out of limited FPGA memory.



 Main

CPU 
   (bwa_aln_core)*

FPGA
(cal_sa_reg_gap)*

20.95MB for 
262,144 seqs.

5.25MB for 
262,144 seqs.

Only once 50.8MB 
initially**

gap_push cal_width

Several other 
small functions

* functions in the bwa code
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Figure1: Data flow graph of bwa-software tool



Steps Process 1 (a) Process 2(b)

1 CPU initially sends the reference gnome 
which is stored in DRAM

2 CPU sends query sequences serially to 
DRAM

The reference gnome is serially transfered 
from DRAM to the FIFO buffers

3 Query sequences are transfered serially 
from DRAM to FIFO buffers

Step 2a continues

4 FPGA blocks(suppose to be iterative in 
CPU) begin executing on Ref gnome and 
their respective query sequence one-by-
one. This output data is stored 
temporarily in DRAM

5 Blocks get refreshed with new query 
sequences and the process continues

When CPU has finished sending the query 
sequences, it starts receiving the stored 
output data from DRAM

Table 6: Steps involved in the hardware-software codesign of bwa algorithm. The second process shown 
here is executed in parallel with the first. The steps are divided on the basis of time for execution.

Explanation of Figure 2:
1. CPU sends the reference gnome and the query sequence to the DRAM memory.
2. Reference gnome is transfered from DRAM to all the FIFO buffers simultaneously.
3. Ite blocks read the reference gnome data part by part from the FIFO Buffers.
4. Ite blocks read query sequence from DRAM*.
5. The Ite blocks process the data and send the result back to the DRAM memory**.

      6.   CPU receives the output data from DRAM.

*Due to less availability of I/O ports in DRAM, the data will be first written to BRAM 
** Output Data will be first written to BRAM
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Figure2: Hardware-Software Codesign



Conclusion and Future Work 

Sequence alignment is the first step to many applications in Bioinformatics and other related fields. 
Our work on FPGA may speed up the selected algorithm and thus fasten sequence alignment. This 
may result in speeding up of the entire chain of its applications in various fields such as biological 
research, diagnostic, biotechnology, forensic biology and biological systematics. 

Our contribution  may also help design better FPGA accelerators for next- generation sequencing. 
Our methodology may provide insight into hardware- software codesign of sequence alignment 
software tools. Furthur, our implementation can be compared with other possible hardware 
implementations like GPUs for a performance enchancement.
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